
JOHANN SCHUMANN

AUTOMATED THEOREM PROVING

IN HIGH-QUALITY SOFTWARE DESIGN

1. INTRODUCTION

The amount and complexity of software developed during the last few years has

increased tremendously. In particular, programs are being used more and more in

embedded systems (from car-brakes to plant-control). Many of these applications are

safety-relevant, i.e. a malfunction of hardware or software can cause severe damage

or loss. Tremendous risks are typically present in the area of aviation, (nuclear) power

plants or (chemical) plant control (Neumann, 1995). Here, even small problems can

lead to thousands of casualties and huge financial losses. Large financial risks also

exist when computer systems are used in the area of telecommunication (telephone,

electronic commerce) or space exploration. Computer applications in this area are not

only subject to safety considerations, but also security issues are important.

All these systems must be designed and developed to guarantee high quality with

respect to safety and security. Even in an industrial setting which is (or at least should
be) aware of the high requirements in Software Engineering, many incidents occur.

For example, the Warshaw Airbus crash (Neumann, 1995), pg. 46, was caused by an

incomplete requirements specification. Uncontrolled reuse of an Ariane 4 software

module was the reason for the Ariane 5 disaster (Lions et al., 1996). Some recent

incidents in the telecommunication area, like illegal "cloning" of smart-cards of D2-

GSM handies (Spiegel, 1998), or the extraction of (secret) passwords from German

T-online users (c't, 1998) show that also in this area serious flaws can happen.

Due to the inherent complexity of computer systems, most authors claim that only

a rigorous application of formal methods in all stages of the software life cycle can

ensure high quality of the software and lead to real safe and secure systems. In this

paper, we will have a look, in how far automated theorem proving can contribute to a

more widespread application of formal methods and their tools, and what automated

theorem provers (ATPs) must provide in order to be useful. We will justify our
observations with results of case studies, most of which have been carried out with the

theorem prover SETHEO (Letz et al., 1992; Goller et al., 1994).

JOHANN SCHUMANN

2. FORMAL METHODS AND DEDUCTION

Formal methods in general refer to the use of techniques from logic and discrete math-

ematics in specification, design and construction of computer systems and software

(Kelly, 1997). Formal methods are based on logic and require the explicit and concise

notation of all assumptions. Reasoning is performed by a series of inference steps of

the underlying logic (formal proof).

Formal methods can be applied during various stages of the software life cycle and

on different levels of "formality". (Kelly, 1997), pg. 7 distinguishes between three

levels of formalization: on the lowest level, mathematical concepts and notations are

used to express the requirements and assumptions.' However, the analysis (if there

is any) is only performed in an informal way. On the second level, formal specifi-

cation languages are located. Also based on mathematical concepts, the underlying

(denotational or operational) semantics of the specification language allows to per-

form formal reasoning. On this level, we find the classical specification languages

like Z, VDM, and others, some with computer support (like syntax-controlled editors,

type-checkers, or simulators). Finally, the third level concerns formal specification

languages with a comprehensive environment including (automated) theorem provers

and proof checkers.

Of course, the effort spent on formal methods substantially increases as the level of
formalization rises. However, for the design of High-Quality Software, a considerable

level of formal reasoning (with computer support) is necessary. Only then, even

intricate errors can be detected, and safety and security properties can be guaranteed.
Such a level usually requires proving lots of theorems on a very formal, detailed

level. Doing this by hand is not only a very time-consuming, but also error prone

task. Hence, computer support for (or, ideally automatic processing of) the proof

obligations is necessary. Practical application of formal methods in industry (see e.g.

(Weber-Wulff, 1993)), however, poses additional requirements on methods and tools:

they must be usable and user friendly. This implies that a tool should

• support the entire software life cycle,

• fit smoothly into existing software development procedures,

• exhibit a fast learning curve,

• hide non-problem-specific details (e.g., existence of a prover), and

• be suited for real applications.

The last issue means that, for example, a tool must rather be able to handle trivial,

but lengthy code (e.g., legacy code, macro code) than dealing with complex recursive

algorithms (just think at the famous "quick-sort" example). Today's tools supporting

formal methods are using interactive theorem provers, model checkers, and to a less

extend, automated theorem provers.

AUTOMATED TP IN HIGH-QUALITY SOFTWARE DESIGN

2.1. Interactive Theorem Provers

Traditionally, interactive theorem provers like ACL2 (Kaufmann and Moore, 1996),

EVES (Craigen and Saaitink, 1996), HOL (Gordon, 1987), Isabelle (Paulson, 1994),

KIV (Reif, 1992), NqThm (Boyer and Moore, 1988), and PVS (Crow et al., 1995) --

just to name a few -- are being used to tackle proof tasks arising in many applications.

These systems have a highly expressive input language. A higher order logic or

customized logic can be defined formally and used within this framework. Formal

definitions of theories can be used for the semi-automatic generation of induction

schemes and simplifiers, lnteractively activated tactics process the goals of the current

theorem to be proven. Most systems furthermore contain an interactive (mostly emacs-

based) user interface which allows _o work on the open goa/s and to control the data

base of theorems already proven.
Interactive theorem provers can be customized for specific applications and do-

mains. To this end, the prover is augmented with definitions of specific logics and

libraries of domain-specific tactics. Nevertheless, the proof of a theorem in general

requires many interactions. Proof times of several months (e.g., (Schellhorn and

Ahrendt, 1998; Havelund and Shankar, 1996)) are not an exception. Furthermore, the

user must have a detailed know-how of the custom logic and the prover itself. For

example, many proofs in (Paulson, 1997b) "[...] require deep knowledge of Isabelle".

Despite their power, interactive theorem provers are only of limited usability in an

industrial environment, because of their long learning curve and their relatively little

degree of automatic processing.

2.2. Model Checking

On the other hand, Model Checkers for propositional (temporal) logic are more and

more used in important applications. Originating from the area of hardware design and

verification, these automatic tools provide an efficient means to tackle (large) proof

tasks which have a finite state space (e.g., finite automata). Prominent systems are

e.g., SMV (Butch et al., 1992), SPIN (Holzmann, 1991), Step, murphi (Dill, 1996),
or/.,cke. Logics, specifically suited for the description of finite automata and their

properties (e.g., CTL (Butch et al., 1990)) and convenient input languages facilitate the

use of Model Checkers. Their ability to generate counter-examples when a conjecture

cannot be proven provides valuable feed-back for the user.

Recently, Model Checkers have been extended (see e.g. (Burkart, 1997) or Mona

(Klarlund and M_ller, 1998)) to handle infinite domains which have a finite model

property (i.e., if a model exists it has a finite size). Nevertheless, Model checkers

usually cannot be applied in applications where recursive functions and data structures

are used. Furthermore, most systems are not able to produce a formal proof (as a

sequence of inference steps) which can be checked (or proof-read) externally (but see

e.g., the Concurrency Workbench (Moiler, 1992; Cleaveland et al.,. 1993)). Rather, the

user has to rely on the correctness of the implementation I. The most severe reduction

for the practical applicability of Model Checkers is the limit of the size of the state

JOHANNSCHUMANN

spacetheycanhandle.Despitenumerousapproaches(e.g.,(Clarkeetal., 1994)),
prooftasksmustbebrokendownorabstractedcarefullyinordertoavoidstatespace
explosion.

2.3. Automated Theorem Provers

Automated theorem provers (ATPs) for first order predicate logic (e.g. OTI'ER (Mc-
Cune, 1994a), Gandalf (Tammet, 1997), METEOR (Astrachan and Loveland, 1991),

SETHEO (Letz et al., 1992; Letz et ai., 1994; Moser et al., 1997), SNARK (Stickel

et al., 1994), SPASS (Weidenbach et al., 1996) ... 2) can handle full first order logic.

Nevertheless, they are only used very rarely in applications in the area of Software

Engineering. Although, due to intensive research (e.g., the German "Schwerpunkt

Deduktion" (Bibel and Schmitt, 1998)), these systems have gained tremendously in

power, one is tended to ask: "Why are they not used?" and "Is there really a gap

between Higher-Order logic interactive theorem proving 3 and decision procedures?"

Currently, most Automated Theorem Provers (ATPs) are like racing cars: although

very fast and powerful, they cannot be used for everyday traffic, because essential

things (like head-lights) are missing. The classical architecture of an ATP (i.e., a

highly efficient and tuned search algorithm) will and must be extended into several

directions in order to be useful for real applications.

For the rest of this paper, we are concerned with the topic how, and in which way

automated provers are to be extended in order to be applicable in the area of High

Quality Software Design. We can identify direct application (i.e., proof obligations
are already suited for direct processing by an ATP), integration of ATPs into inter-

active theorem provers, and the adaptation of automated provers towards practical

applicability.

3. DIRECT APPLICATIONS

Racing tracks are specifically suited for racing cars. In our application area, domains

can be identified which are suited for direct processing with an ATP. Obviously, the

formal method should be close to First Order Logic (FOL), or a logic which can

be translated effectively into FOL. Furthermore, the proof obligations must be of a

complexity (size of the formula and size of the induced search space) which can
be handled within current-technology theorem provers and the proof tasks must be

provable without application of induction 4. If these requirements are not met, it might

be better not to use a general purpose ATP, but some special purpose algorithm. E.g., in
PLANWARE (Burstein and Smith, 1996) the designers had enough information about

how to find a solution that they "were able to throw out the theorem prover" (Smith,

1998). In this paper, we will have a look at three specific systems which directly apply

automated theorem provers: PIL/Sv:rHEo, NORA/HAMMR, and AMPHION.

AUTOMATED TP IN HIGH-QUALITY SOFTWARE DESIGN

3.1. PIL/SETHEO

PIL/SETHEO is a prototypical tool for the automatic verification of authentication

protocols (Schumann, 1997; Dahn and Schumann, 1998; Schumann, 1999b). Authen-

tication protocols are used in most distributed applications (e.g., internet, electronic

commerce, wireless telephone networks) to identify the communication partners and

to establish a secure communication, e.g., by exchanging encryption keys. Due to the

importance of these protocols, their verification is vital. Several formal approaches

to guarantee security properties (c.f. (Meadows, 1994; Geiger, 1995) for an overview)

have been developed in the past: using modal logics of belief (e.g., (Burrows et al.,

1989; Burrows et al., 1990; Gong et al., 1990; Syverson and van Oorschot, 1994; Abadi

and Tuttle, 1991; Kessler and Wedel, 1994; Kindred and Wing, 1996)), Model Check-

ing (Kindred and Wing, 1996), and approaches based on communicating sequential

processes (Paulson, 1997a; Paulson, 1997b; Lowe, 1996).

PIL/SETHEO can analyze authentication protocols using the modal BAN-logic

(Burrows et al., 1989) or the AUTLOG-Iogic (Kessler and Wedel, 1994). These logics

are often employed in early stages of protocol development, because they are able

to handle freshness properties (an important class of security properties) and produce

short and informative proofs. Given the specification of a protocol and additional

assumptions, PIL/SETHEO transforms the formulas into first order logic and starts

the prover SETHEO. Proofs found by SETHEO ale then automatically translated

into a problem-oriented, human-readable form. An example for input and output

for a simple protocol (a slight modification of the RPC-handshake (Satyanarayanan,

1987)) is shown in Figure 1. Proofs are in general found within a few seconds

of run-time. Rather than going into details (which can be found in (Schumann,

1997; Dahn and Schumann, 1998)), Figure 1 illustrates an extremely important feature
of PIL/SETrtEO (as of any successful application): it hides any evidence of the

automated theorem prover and first order logic. Both, input and output are in problem-
oriented form (here, a modal belief logic), and the user does not need to have any

knowledge about the prover's details.

3.2. NORA/HAMMR

Reuse of approved software components is an important method for ensuring high

quality in software systems. NORA/HAMMR (Schumann and Fischer, 1997; Fischer

et al., 1998) is a tool for the deduction-based retrieval of components from a library

of reusable components. Using a contract-based approach, the library modules are

identified by a VDM/SL specification of their pre- and post-conditions. In order

to retrieve components, a query specification (also in VDM/SL) is given. Then, the
library is automatically searched for matching modules. Matching components usually

have a weaker pre-condition than the query, and a stronger post-condition (for details
on different ways of retrieval see (Fischer, 1999)).

The tool NORA/HAMMR is designed for optimal usability. A graphical user in-

terface (see Figure 2) allows to enter the query, browse selected components from

JOHANN SCHUMANN

Objects:
principal A,B;
sharedkey K_a_b, Kp_a b;
statement N_a, N_b;

Assumptions:
A believes sharedkey K_a b;
B believes sharedkey K_a b;
A believes B controls

sharedkey K_a b;
B believes sharedkey Kp_a_b;
A believes fresh N a;
B believes fresh N b;

Idealized Protocol:
message i: A -> B

{N_a} (K_a_b) ;
message 2: A <- B

{f (N_a),N_b} (K_a b) ;
message 3: A -> B

{N_b}(K a_b);
message 4: A <- B

{sharedkey Kp_a_b}
(K_ab);

Conjectures: after message 4:
B believes A believes N_b;

Theorem 1. conjecture.

Roof. We show directly that

conjecture.

Because of Message-Meaning,

Assumption_, and by Message3

Because of Theorem

(I)

(2)

conjecture _ F- B_ A_ Nn.

(3)

Because of Nonce-Verification: A_ B_

C¢= A_ B[--- C A A_ #C. Hence

by (2) and by Assumption_ -, conjecture.

Hence by (3) conjecture. Thus we have

completed the proof of (1). q.e.d.

Figure I Example input and output of PIL/SETHEO

the library, and control the search process which is structured as a pipeline of fil-

ters of increasing deductive power. The filters are capable of efficiently discarding

non-matching components. Starting with signature matchers and simplification filters,

most of the interesting components can be preselected. A subsequent model checking

filter tries to identify non-matching components. Finally, a first-order theorem prover

processes the matching relation. If a proof can be found, the library component can be

safely reused. Hence, only a tiny fraction of proof tasks is processed by the automated

prover. This ensures short answer-times, one of the most important requirements for

this kind of applications.

The filter pipeline can be configured by the user, but the control of the provers is

kept invisible from the user. Therefore, the tool only requires knowledge about the

(problem-oriented) specification language VDM/SL. NORA/HAMMR (see Figure 2

for a screen-shot) has been evaluated extensively on a large library on functions

about lists (Fischer et al., 1998). The automated provers Protein (Baumgartner and

Furbach, 1994), SETHEO and SPASS (Weidenbach et al., 1996) have been used for

the experiments. With a run-time limit of 60 seconds, a recall (percentage of retrieved

matching components) of more than 71% (SPASS) could be obtained. If all provers are

AUTOMATED TP IN HIGH-QUALITY SOFTWARE DESIGN

Figure 2 Graphical User Interface of NORA]HAMMR

running in a parallel competitive mode (see Section 5.2), the recall could be increased

to 80% which is acceptable for practical purposes.

3.3. Amphion

The main application area of AMPHION (Lowry et al., 1994) is the automatic synthesis

of astrodynamic (FORTRAN-) programs out of a given subroutine library (NAIl=).

Specifications are entered in a graphical way as shown in Figure 3 (taken from (Lowry

et al., 1998)). All bodies (here Jupiter, Sun, space-craft) and their relationship as well

as the desired function (here to calculate the boresight angle between the Space-craft

Galileo and the Sun) are entered using graphical elements. From this, an internal
formal specification of the problem is automatically generated and processed by the

automated prover SNARK (Stickel et al., 1994). Its result corresponds to the sequence

of library calls necessary to calculate the desired function. Finally, a post-processor

converts this data structure into the desired FORTRAN program (Figure 3).

This tool is widely used within NASA and has been extended to handle several other

domains. Here again, hiding the prover and its logic is important. Only then, this tool

can be used by non-specialists in the area of theorem proving. Further features of this

kind of application come immediately into mind: proofs as a result are important, the

domain is rather restricted (only a linear sequence of subroutine calls) but nevertheless

important. However, more complex application domains probably would require at

least some kind of user interactions and/or specific adaptations and extensions to bare-

JOHANNSCHUMANN

I 'If

SUBRO_[_'E: SOL,ARO ("L_AL, INSTID,S_ANG)

CC Inpu_ vat LabIi=

¢_JU_ACTER • I°p T_AL

INTEGER INSTID

¢ O_tpu_ vat _ab_e=

DOUBLE PRECISION S_ANC

C C_L SCS2E (_A_LE, TUAL. _I)

CALL BODVAR (JUPITE, 'RADII'. 0h_l, RAOJUP

CALL SPKSSB (GALILE. _ALI. "32OOO', PVC.kLI

CALL SCE2T (_NSTID, ETGALI, TK_NST

TJU_T • SENT _ JUp_TE. _ALILE, ETUALZ

CALL BOD_AT (.TUpITE, TJUPIT. _UPIT)

CALL, ST2POS (F_C*ALI, PPVGAL I

CALL $PKSSB (dUPITE. TJ_PIT, '.T_000', _"}3UPI I

C C_ SLTRF_ (RADJUPII_. _JUPt21, RADYCPI]), P, PP

CALL MTX_ i _UPIT. _. X_)

CALL _ (_.JUPIT. PP. XPP)

CALL VADD (P_VJUp, XP, V0)

CALL VS_ (?_SUN. V0. DVOP_V)

$tA_G • VSEP { X_P. DV0?_)

RETUR_

END

Figure 3 Example input and outputof AMPHION

bone automated theorem provers (e.g., inclusion of decision procedures (Lowry and
van Baalen, 1995)). Both directions will be discussed in the following.

4. INTEGRATION INTO INTERACTIVE PROVERS

The goal of integrating automated theorem provers into interactive provers is to relieve

the user from tedious, error-prone and low-level work. Only major decisions -- the

"central proof ideas"-- will have to be provided by the human user, whereas trivial

tasks are performed automatically. Such a system architecture can profit much from

the reasoning power of automated theorem provers. For typical applications, e.g., in
verification, more than about 90% of the Higher-Order logic constructs 5 can easily

be transformed into one or more first order proof tasks. According to (Reif, 1998),

ideally about 25-30% of these tasks can be handled automatically. The others must

be further broken down by the user. We will have a look at two prominent systems
which combine interactive theorem provers with high-performance automated theorem

proving: ILF and KIV.

4.1. ILF

ILF (Dahn et al., 1994) is an interactive proof environment ("Proof-Pad") which

allows the interactive construction of complex proofs by using tactics. The system has

been successfully applied to problems from mathematics (Mizar (Dahn and Wemhard,

1997)), hardware verification (verification of a microprocessor (Wolf and Kmoeh,

1997)) and the verification of communication protocols (Dahn and Schumann, 1998).

AUTOMATEDTP IN HIGH-QUALITY SOFTWARE DESIGN

This work showed its usability in the area of High-Quality software and hardware

design.

For the verification of software protocols, an interface to the specification language

Z has been defined and implemented (Dahn and Schumann, 1998). Z specifications

are directly translated into ILF's sorted first order predicate logic. With the help of a

graphical user interface and a tactics-based language, the proof tasks can be broken

down into individual subgoals. Each subgoal is first tried by one of the connected

automated provers (OTTER (McCune, 1994a), SETHEO (Letz et al., 1992; Goller

et al., 1994), and Discount (Denzinger, 1995; Denzinger and Pitz, 1992)6). The time-

limit for the automatic tries -- which are performed in parallel (see Section 5.2)

is set to several seconds. If during this time no proof could be found, the user has to

further break down the proof obligation.

A unique feature of ILF is its capability to present the user a problem-oriented,

human readable proof. Such a proof consists of a "patchwork" of small proofs, found

by the automated provers and by the interactive application of tactics. By using a
common (natural deduction-style) calculus, the Block calculus (Dahn and Wolf, 1994),

all proofs can be represented in a uniform style. This proof is then automatically post-

processed and typeset to obtain a LATEX-document (see also Figure 1, right-hand side

for an example).

4.2. KIV and Automated Theorem Provers

KIV (Reifet al., 1997) is an interactive verifier, specifically suited for the verification

of High-Quality software. Many industrial applications of KIV, e.g., the verification of

an Airbag controller (Reif, 1998) demonstrates the practical usability of this system.

Based on dynamic logic, reasoning can be performed manually and by tactics. As

with any interactive system, the time to find a proof can be considerably. For example,

for the verification of certain refinement steps for a PROLOG Abstract Machine

implementation (BOrger and Rosenzweig, 1995), proof times of up to two months
have been reported in (Schellhorn and Ahrendt, 1998) 7.

Hence, one aim of KIV's developers is to use automated theorem provers to pro-

cess simple proof tasks without user interaction. To this end, the prover :flAp (H_thnle

et al., 1992; H_hnle, 1993; Beckert and H_anle, 1992) was integrated into KIV, and

experiments on the expected performance of SETHEO, SPASS, Otter, and Protein

(Baumgartner and Furbach, 1994) have been performed for selected domains (Schell-

horn and Reif, 1998). One key-problem which was identified is the preprocessing

of axioms: when working with the interactive system, one usually loads all theories

(e.g., theory of natural numbers and arithmetic, lists, trees) which might be needed

for the ongoing verification. When interactive steps are performed, the human user

usually knows which of the axioms is to be applied. Most automated theorem provers,

however, are overwhelmed by the sheer number of axioms (often several hundreds)

which are included in the formula. Therefore, a powerful mechanism for the preselec-

JOHANNSCHUMANN

tionofaxiomsisvital.A straight-forwardmethodhasbeenintegratedintoKIV (see
Section5.1.1) whichperformsverywell.

5.ADAPTATION OF AUTOMATED PROVERS

Although automated theorem provers for first order logic have become very powerful,

they need to be adapted in order to be useful for the intended application. This is due

to the fact that most ATPs have been designed and evaluated with the aim to solve

small, but hard problems as they typically occur in mathematics. The large collection

of problems in the TPTP benchmark library (Sutcliffe et al., 1994) reflects this fact:

most problems are specifically formalized and prepared for automated deduction.

Proof tasks from applications in the area of high quality software design usually

poses quite different requirements for the automated theorem prover (cf. (Schumann,

1999a)). Extensions needed to meet these requirements include handling of non-first

order logics (e.g., inductive problems, modal logics), efficient equality and theory

treatment, handling of non-theorems (i.e., giving useful feed-back if a conjecture

cannot be proven), post-processing of proofs, etc. Due to space restrictions we will

focus on only two topics: preprocessing of the formulas and parallel execution in

order to reduce the prover's answer time. Although all extensions mentioned above

are important, experience with many case studies (cf. (Schumann, 1999a)) revealed

that these issues are central for a successful application.

5.1. Preprocessing

In most applications, proof obligations are generated automatically by the application

system. Because this usually involves a transformation between different logics, the

generated formulas can contain many redundancies and lots of axioms which will not

be needed for finding a proof, Automated theorem provers, however, are extremely

sensitive with respect to the number of (unnecessary) clauses added to the formula.

Therefore, it is important to perform a powerful preprocessing of the formula with the

goal of optimizing it without affecting its provability.

5.1.1. Preselection of Axioms

In general, the task of selecting the appropriate axioms which contribute to the proof

is as hard and undecidable as the proof task itself. Therefore, approximations are

necessary. For domains with a rich signature and a hierarchical structured theory, a

straight-forward and powerful method has been developed in (Scheilhorn and Reif,

1998): given a formula, one selects only such (sub-)theories which are on the branch

from the theory, required by the theorem to the root of the hierarchy. For example,

to prove a theorem about the length of a list using the append operator, only the

axioms belonging to the sub-theories of lists and natural numbers with addition have

to be added. So, axioms, defining multiplication (which usually also belong to the

theory of natural numbers) can be omitted. This mechanism is a part of the interactive

AUTOMATEDTPINHIGH-QUALITYSOFTWAREDESIGN

systemKIV(Section4.2)andhasbeenevaluatedin(SchellhornandReif,1998)with
theorems,comingfromthedomainof graphs.Withthefull setof axioms(more
than500axioms),SETHEOcouldshow18exampletheorems((SchellhornandReif,
1998),pg.238).Theaxiomreductionyieldslessthan100axiomswhichenabled
SETHEO tO solve 29 problems a. Similar methods have been integrated into ILF and

NORA/HAMMR.

5.1.2. Simplification

Proof tasks which are being generated automatically, typically contain parts which are

not useful for the current proof obligation. Examples are parts which are obviously

not usable ("pure" parts or tautologies, e.g., .Y"A TRUE). Such sub-formulas can be

removed without affecting the logical properties of the formula, thus reducing the

theorem prover's search space considerably.

Very old versions of SETHEO (Letz et al., 1988) contained such preprocessing

modules. However, due to the general focus on problems which are already simplified

and minimized, this aspect had been totally neglected by most ATP designers. Sim-

plification should be performed as soon as possible (i.e., already on the level of the

application) and on all subsequent levels (application logic, first order logic, clausal

normal form). Typical ways of simplifying a formula which directly come into mind
are:

removal of obviously tautological parts (e.g., TRUE, FALSE, 19V _p).

optimization of the quantifies with the aim of producing Skolem functions with

minimal length and small sets of clauses (cf. e.g. (Eder, 1985; Nonnengart et al.,
1998)).

• simplification of the formula with respect to underlying theories. This means that
e.g., cons(X, Y) = 0 can be simplified to FALSE.

• formulas of the form VX : (X = a _ br[X]) and some arbitrary _" can be

replaced by: _r[X\a]. This means that all unconditional equations are applied

to the whole formula and then removed. This kind of simplification is particular

helpful when processing induction cases like VL : L = ['] -¢..7:'.

However, much more sophisticated ways of simplification are possible and de-

sirable. Some methods, using semantic information have been implemented in the

system NORA/HAMMR (Fischer et al., 1998). Here, simplification is also used to de-

cide (where possible) if the theorem can be valid or not. In particular in applications,

where most of the proof obligations are non-theorems, this turns out to be extremely

helpful. But this is by far not the end. Experience with interactive theorem provers

and symbolic algebra systems (e.g., Mathematica (Wolfram, 1991)) reveals that sim-

plifiers are the central and most intricate parts of such a system. Therefore, elaborate

simplification of a proof task should not only be performed during the preprocessing

phase, but also during the search for the proof.

JOHANNSCHUMANN

5.2. Parallel Execution

Most applications of automated theorem provers share a common and important re-

quirement: short answer time. In particular for systems like NORA/HAMMR, KIV,

or AMPHION where the user is waiting for the answer ("results while-u-wait"), short

response times are vital for the acceptance of such a tool. Furthermore, the automated

prover hooked to the system should be able to handle reasonably complex proof obli-

gations, and the behavior of the prover should be "smooth". This means that proof
tasks which are somewhat similar to each other should also exhibit a similar behavior

w.r.t, response times.

A paradigm which is able to support the above requirements is the exploitation

of parallelism. As has been demonstrated in (Kurfel], 1990), automated theorem

proving exhibits an enormous potential of parallelism. With the widespread availability

of modem architectures like coupled multi-processor systems and large (often idle)

networks of powerful workstations, parallel processing of proof tasks has gained

practical importance.

Of the many approaches of parallel theorem proving which have been explored

(see e.g. (Suttner and Schumann, 1993; Schumann et al., 1998) for an overview), the

models of competition and (static) partitioning seem to be the most appropriate ones

for applications. In a competitive model, all processes must solve the same (entire)

proof task, but can use different parameters (p-SETHEO (Wolf, 1998)) or parameter

ranges (SiCoTHEO (Schumann, 1995)). The first process which finds a solution, wins

and aborts the other processes. If the search parameters for each process exhibit a
behavior which is sufficiently different from the others, good speed up values can be

obtained while reducing the answer times. As an additional advantage, the model

does not rely on high communication bandwidth and low latency, because interprocess

communication is limited to start-up and shut-down of the system.

On the contrary, a static partitioning approach (e.g., SPTHEO (Suttner, 1995))

splits up the formula into many independent parts which are searched individually and

in parallel. This model also produces good scalability and efficiency. In contrast to dy-

namic partitioning (like PARTHEO (Schumann and Letz, 1990)), static partitioning is

easier to implement on arbitrary architectures and has substantially lower requirements
on the communication means.

6. CONCLUSIONS

In this paper, we have investigated how first-order automated theorem provers can be

applied to the development of High Quality Software. Formal methods which facilitate

the design, development and verification need support by powerful, yet user-friendly

tools. Here, automated theorem provers can be used to relieve the user from tedious,

error-prone work on details of the proof obligations. We have identified two ways of

applying ATP, namely direct applications and their integration into interactive provers

and verifiers. However, automated provers without modifications can be applied only

in very few cases, because they lack several important features. In this paper, we

AUTOMATEDTPINHIGH-QUALITYSOFTWAREDESIGN

presentedworkonthefollowingcentralissues:preprocessingof proof obligations and

efficient control by exploitation of parallelism.

The enormous potential of automated provers can be used in practical applications

only if important core requirements, identified in successful case studies are met:

• evidence of the automated prover must be hidden.

automated provers must support handling of finite domains in an efficient way

(e.g., by exploiting model generation techniques or by integrating decision pro-

cedures).

• ATPs must be able to handle obvious non-theorems appropriately, and must give

feed-back in such cases (e.g., a counter-example).

pragmatic issues must be obeyed more carefully, e.g., precisely defined input

language, implementation restrictions (like reserved identifiers, length of sym-

bols). In research-oriented environments, these issues are often overlooked and

neglected. However, they are important prerequisites for real successful applica-

tions of automated theorem provers.

With carefully chosen application domains and theorem provers which meet the

above requirements and are adapted accordingly, automated theorem provers are pow-

erful enough to help to really bring forward industrial-applicable formal methods tools

for the development of High-Quality Software.

ACKNOWLEDGMENTS

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) within the Habilitation-

grant Schu908/5-1,Schu908/5-2,and SFB 342/A5. Partial funding for this paper was provided

by NASA RTOP 519-50-22.

Johann Schumann

NASA Ames/Caelum Research Corp.

Moffett Field, Ca., USA

NOTES

1. This was also a point of critique when Model generators (Finder (Slaney, 1994) and Mace (McCune,

1994b)) were used in the area of finite quasi-groups.

2. See (Sutcliffe and SuRner (editors), 1997) for a broader overview.

3. Note, that some ITP's (e.g., PVS (Rajah et al., 1995)) already combine interactive theorem proving

with decision procedures (e.g., model checking with _-ealculus and linear arithmetic solver).

4. Otherwise, special purpose inductive provers (e.g., Oyster/Clam (Bundy et al., 1990)) or interactive

provers must be used to handle the proof task itself, or to generate first order subproblems ("base case, step

case") out of the given proof task.

JOHANNSCHUMANN

5. Thisfigureresultsfromestimates,givenbyseveral researchers to the author.

6. Whereas the first two provers can handle arbitrary formulas in first order logic with equality,

Discount is restricted to problems which consist of equations only. In this domain, however, Discount is

extremely powerful.

7. Although the topic of this case study might seem a little academic, its complexity and size resembles

a typical demanding industrial application.

8. OTTER exhibits a similar behavior: it could solve 24 with all axioms and 31 with the reduced set

of axioms ((Schellhom and Reif, 1998), pg. 238).

REFERENCES

Abadi, M. and Turtle, M. R. (199 I). A Semantics for a Logic of Authentication. In Proc. of the Tenth Annual

A CM Syrup. on Principles of Distributed Computing, pages 201-216. ACM press.

Astrachan, O. and Loveland, D. (1991). METEORs: High Performance Theorem Provers using Model

Elimination. In Boyer, R., editor, Automated Reasoning: Essays in Honor of Woody Bledsoe. Kluwer

Academic Publishers.

Baumgarmer, P. and Furbach, U. (1994). PROTEIN: A PROver with a Theory Extension Interface. In

Proc. 12th International Conference on Automated Deduction (CAD E 121, volume 814 of LNAI, pages

769-773. Springer.

Beckert, B. and H_mle, R. (1992). An Improved Method for Adding Equality to Free Variable Semantic

Tableau. In Kaput, D., editor, Proc. l l th International Conference on Automated Dtduction (CADE IlL

volume 607 of I-,NAL pages 507 - 521. Springer.

Bibel, W. and Schmitt, P., editors (1998). Automated Deduction: a Basis for Applications, volume 8-10.

Kluwer.

B6rger, E. and Rosenzweig, D. (1995). The WAM -- definition and compiler correctness. In Logic Pro-

gramming: Formal Methods and Practical Applications, volume I 1 of Studies in Computer Science and

Artificial Intelligence. North-Holland.

Boyer, R. S. and Moore, J. S. (1988). A Computational Logic Handbook. Academic Press.

Bundy, A., van Harrnelen, E, Horn, C., and Smaill, A. (1990). The Oyster-Clam System. In Stickel, M. E.,

editor, Proc. lOth International Conference Automated Deduction (CADE I0), volume 449 of Lecture

Notes in Computer Science, pages 647-.648. Springer.

Butch, J. R., Clarke, E. M., McMillan, K. L., Dill, D., and Hwang, L. J. (1992). Symbolic Model Checking:

1020 States and Beyond. Information and Computing, 98(2): 142-170.

Butch, J. R., Clarke, E. M., McMillan, K. L., and Dill, D. L. (1990). Sequential Circuit Verification Using

Symbolic Model Checking. In Proc. 27th ACM/IEEE Design Autom. Conf. _ Comp. Soc. Press.

Bttrkart, O. (1997). Automatic Verification of Sequential Infinite-state Processes, volume 1354 of Lecture

Notes in Computer Science. Springer.

Burrows, M., Abadi, M., and Needham, R. (1989). A Logic of Authentication. In ACM Operating Systems

Review 23(5) / Proceedings of the TWelfth ACM Symposium on Operating Systems Principles. ACM

Press.

Burrows, M., Abadi, M., and Needham, R. (1990). A Logic of Authentication. ACM Transactions on

Computer Systems, 8(1): 18-36.

Burstein, M. B. and Smith, D. (1996). ITAS: A Portable Interactive Transportation Scheduling Tool Using a

Search Engine Generated from Formal Specifications. In Proceedings of the 3rd International Conference

on A! Planning Systems (AIPS-96), pages 35--44. AAAI Press.

AUTOMATEDTP IN HIGH-QUALITY SOFTWARE DESIGN

Clarke, E. M., Grumberg, O., and Long, D. E. (1994). Model checking and abstraction. ACM Transactions

on Programming Languages and Systems, 16(5): 1512-1542.

Cleaveland, R., Parrow, J., and Steffen, B. (1993). The Concurrency Workbench: A semantics-based tool

for the verification of concurrent systems. ACM Transactions on Programming Languages and Systems,

15(1):36-72.

Cralgen, D. and Saaltink, M. (1996). Using EVES to Analyze Authentication Protocols. Technical Report

TR-96-5508-05, ORA Canada.

Crow, J., Owre, S., Rushby, J., Shaakar, N., and Srivas, M. (1995). A Tutorial Introduction to PVS. In

WIFT'95 Workshop on Industrial strength formal specification techniques, Boca Raton, Fl, USA.

c't (1998). T-online: Hacker knacken Zugangsdaten. c 't Computermagazin, (7/98):62ff.

Dahn, B. I., Gehne, I., Honigmann, T., Walther, L., and Wolf, A. 0994). Integrating Logical Functions with

ILE Technical Report Preprint 94-10, Humboldt University Berlin, Deparm_nt of Mathematics.

Dahn, B. I. and Wernhard, C. (1997). First Order Proof Problems Extracted from an Article in the MIZAR

Mathematical Library. In Proceedings of the 1st International Workshop on First-Order Theorem Proving

(FTP), pages 58--62. RISC Linz, Austria.

Dahn, B. I. and Wolf, A. (1994). A Calculus Supporting Structured Proofs. Journal for information Pro-

cessing and Cybernetics (EIK), (5-6).

Dahn, I. and Schumann, J. (1998). Using Automated Theorem Provers in Verification of Protocols. In Bibcl,

W. and Schtmtt, P., editors, Automated Dede4ction. A basis for applications, chapter Ill.8, pages 195-224.

Kluwer.

Denzinger, J. (1995). Knowledge-Based Distributed Search Using Teamwork. In Proceedings ICMAS-95,

pages 81-88. AAAI-Press.

Denzinger, I. and Pitz, W. (1992). The DISCOUNT System. User Manual. SEKI Working Paper SWP-92-16,

Universit_t Kaiserslautem.

Dill, D. L. (1996). The Murphi Verification System. In Rajeev Alur and Thomas A. Henzinger, editors,

Proceedings of the Eighth International Conference on Computer Aided Verification CAV, volume 1102

of Lecture Notes in Computer Science, pages 390-393. Springer.

Eder, E. (1985). An Implementation of a Theorem Prover based on the Connection Method. In Bibel, W. and

Petkoff, B., editors, AIMSA: Artificial Intelligence Methodology Systems Applications, pages 121-12g.

North-Holland.

Fischer, B. (1999). Deduction Based Software Component Retrieval. Phi) thesis, TU Braunschweig. (forth-

coming).

Fischer, B., Schumann, J., and Snelting, G. (1998). Deduction based component retrieval In BibeI, W.

and Schmitl, P., editors, Automated Deduction. A basis for applications, chapter ill. 11, pages 265-292.

Kluwer.

Geiger, J. (1995). Formale Methoden zur Verifikation ka-yptographischer Protokolle. Fortgeschri_nenprak-

tikum, Institut flit Informafik, Technische Univcrsi_ Miincben. (in German).

GoUer, C., I.,ctz, R., Mayr, K, and Schumann, J. (1994). SETHEO V3.2: Recent Dcvclopmena (Sysa_m

Abstract). In Pro(:. 12th International Conference on Automated Deduction (CADE 12), volume 814 of

LNAI, pages 778-782. Springer.

Gong, L., Necdham, R., and Yahalom, R. (1990). Reasoning about Belief in Cryptographic Protocols. In

Proc. of lEEE Symposium on Security and Privacy, Oakla_, Ca.,USA, pages 234-248. [EEE.

Gordon, M. (1987). A proof generating system for higher-order logic. Technical Report 103, Univ. of

Cambridge, Computer Laboratory.

JOHANN SCHUMANN

H_ihnle, R. (1993). Automated Theorem Proving in Multiple-Valued Logics. Oxford University Press.

Hahnle, R., Beckert, B., Gerherding, S., and Kemig, W. (1992). The Many-Valued Tableau-B_ed Theorem
/

Prover 3T_. Technical report, IBM Germany Scientific Center Institute of Knowledge Based Systems.

Havelund, K. and Shankar, N. (1996). Experiments in Theorem Proving and Model Checking for Protocol

Verification. In FME '96, Oxford, UK.

Holzmann, G. J. (1991). Destgn and Validation of Computer Protocols. Prentice Hall.

Kaufmann, M and Moore, J. S. (1996). ACL2: An industrial strength version of NqThm In Compass'96:

Eleventh Annual Conference on Computer Assurance. National Institute of Standards and Technology.

Kelly, J. (1997). Formal Methods Specification and Analysis Guidebook for the Verification of Software and

Computer Systems. Volume II: A Practitioner's Guide. NASA.

Kessler, V. and Wedel, G. (1994). AUTLOG -- An Advanced Logic of Authentication. in Proc. IEEE

Computer Security Foundations Workshop IV, pages 90--99. IEEE.

Kindred, D. and Wing, J. (1996). Fast, automatic checking of security protocols. In 2nd USENIX Workshop

on Electronic Commerce, pages 41-52.

Klarlund, N. and M_ller, A. (1998). Mona version 1.2. User Manual. Brics technical report, BRICS,

University of Aarhus, Denmark.

Kurfel], F. (1990). Parallelism in Logic -- Its Potential for Performance and Program Development. PhD

thesis, Technische Universit_it M_inchen.

Letz, R., May,, K., and Goller, C. (1994). Controlled Integration of the Cut Rule into Connection Tableau

Calculi. Journal Automated Reasoning (JAR), (13):297-337.

Letz, R., Schumann, J., and Bayerl, S. (1988). SETHEO - A SEquential THEOremprover for first order

logic. Technical report, ATP-Report, Technische Universitlftt Miinchen.

Letz, R., Schumann, J., Bayed, S., and Bibel, W. (1992). SETHEO: A High-Performance Theorem Prover.

Iournal of Automated Reasoning, 8(2): 183-212.

Lions, J. L. et el. (1996). Ariane 5 flight 501 failure report.

Lowe, G. (1996). SPLICE-AS: A case study in using CSP to detect errors in security protocols. Technical

report, Programming Research Group, Oxford.

Lowry, M. et aL (1998). The Amphion system. URL: http://ic-www.arc.nasa.gov/ic/projects/amphion.

Lowry, M., Philpot, A., Pressburger, T., and Underwood, I. (1994). Amphion: Automatic Pro_ag

for Scientific Subroutine Libraries. In Proc. 8th Intl. Syrup. on Methodology for Intelligent Systems,

Charlotte, NC, USA, pages 326-335.

Lowry, M. and van Baalen, J. (1995). META-AMPHION: Synthesis of efficient domain-specific program

synthesis systems. In Proceedings of the IOth Knowledge-Based Software Engineering Conference,

pages 2- I0.

McCune, W. (1994a). OTTER 3.0 Reference Manual and Guide. Technical Report ANL-94/6, Argonne

National Laboratory, Argonne, I1, USA.

McCune, W. (1994b). A Davis-Pumam program and its application to finite first-order model search:

Quasigroup existence problems. Technical report, Argonne National Laboratory, Argonne, IL, USA.

Meadows, C. A. (1994). Formal verification of Cryptographic Protocols: A Survey. In Proc. AsiaCrypt.

Moiler, F. (1992). The Edinburgh Concurrency Workbench (Version 6.1). Department of Computer Science,

University of Edinburgh.

Moser, M., lbens, O., Letz, R., Sleinbach, L, Goller, C., Schumann, J., and Mayr, K. (1997). The Model

Elimination Provers SETHEO and E-SETHEO. Journal of Automated Reasoning, 18:237-246.

AUTOMATEDTP IN HIGH-QUALITY SOFTWARE DESIGN

Neumann, P. G. (1995). Computer Related Risks. ACM Press.

Nonnengatt, A., Rock, G., and Weidenbach, C. (1998). On Generating Small Clause Normal Forms. In Proc.

CADE.15, number 1421 in LNAI, pages 397-411. Springer.

Paulson, L. (1997a). Proving properties of security protocols by induction. In PCSFW: Proceedings of The

l Oth Computer Security Foundations Workshop. IEEE Computer Society Press.

Paulson, L. C. (1994). lsabelle: A Gener_c Theorem Prover, volume 828 of LNCS. Springer.

Paulson, L. C. (1997b). Mechanized proofs of security protocols: Needham-Schroeder with public keys.

Technical Report 413, University of Cambridge, Computer Laboratory.

Rajan, S., Shankar, N., and Srivas, M. (1995). An Integration of Model-Checking with Automated Proof

Checking. In Proc. CAV '95, volume 939 of LNCS, pages 84-97. Springer.

Reif, W. (1992). The KIV System: Systematic Construction of Verified Software. In Kaput, D., editor,

Proc. 11th International Conference on Automated Deduction (CAD E 11), volume 607 of LNAI, pages

753-757. Springer.

Reif, W. (1998). Correct Software for Safety-Critical Systems. invited talk, SPPD meeting during CADE- 15.

Reif, W., Schellhorn, G., and Stenzel, K. (1997). Proving system correctness with KIV 3.0. In McCun¢, W.,

editor, Proceedings of the 14th International Conference on Automated deduction (CADE 14), volume

1249 of LNAL pages 69-72. Springer.

Satyanarayanan, M. (1987). Integrating Security in a Large Distributed System. Technical Report CMU-

CS-87-179, CMU.

Scheilhorn, G. and Ahrendt, W. (1998). The WAM Case Study.. Verifying Compiler Correcmess for PROLOG

with KIV, chapter III.7, pages 165-194. In (Bibel and Schrmtt, 1998). Kluwer.

Schellhorn, G. and Reif, W. (1998). Theorem proving in large theories, chapter Ill. I 1. In (Bibel and Schmitt,

1998). Kluwer.

Schumann, J. (1995). SiCoTHEO -- Simple Competitive parallel Theorem Provers based on SETHEO. In

Proc. of PPAI'95, Montreal, Ca.

Schumann, J. (1997). Automatic Verification of Cryptographic Protocols with SETHEO. In Conference on

Automated Deduction (CADE) 14, LNAi, pages 87-100. Springer.

Schumann, J. (1999a). Automated Theorem Proving in Software Engineering. Habilitation, Techniscbe

Universit/Stt Miinchcn, Institut t'ur lnformatik, in preparation.

Schumann, J. (1999b). Automatiscbe Verifikation yon Authentifikationsprotokollen. KI. Springer.

Schumann, J. and Fischer, B. (1997). NORA/HAMMR: Making Deduction Based Component retrieval

Practical. In Proc. 12th Conf. on Automated Software Engineering (ASE), pages 246-254. IEEE Press.

Schumann, J. and Letz, R. (1990). PARTHEO: a High Performance Parallel Theorem Prover. In Stickel,

M. E., editor, Proc. l Oth International .Conference on Automated Deduction (CADE 10), volume 449 of

Lecture Notes in Computer Science, pages 40 - 56. Springer.

Schumann, J., Sutmer, C., and Wolf, A. (1998). Parallel theorem provers based on SETHEO, chapter 11.7,

pages 261-290. In (Bibel and Schmitt, 1998). Kluwer.

Slaney, J. (1994). FINDER: Finite domain enumerator. In Bundy, A., editor, Proc. 12th International

Conference Automated Deduction, volume 814 of Lecture Notes in Artifical Intelligence, pages 798-

801. Springer.

Smith, D. (1998). Deductive support for software development, invited talk, SPPD meeting during CADE- 15.

Spiegel (1998). Aussichten eines Klons. Der Spiegel, 18.

JOHANNSCHUMANN

Stickel, M., Waldinger, R., Lowry, M., Pressburger, T., and Underwood, I. (1994). Deductive Composition of

Astronomical Software from Subroutine Libraries. In Proc. 12th International Conference on Automated

Deduction (CADE 12), volume 814 of LNA[, pages 341-355. Springer.

Sutcliffe, G. and Suttner, C., editors. (1997). Journal Automated Reasoning, volume 18.

Satcliffe, G., Sutmer, C., and Yemenis, T. (1994). The TlYrP Problem Library. In Proc. 12th International

Conference on Auwmated Deduction (CADE 12), volume 814 of LNAI, pages 252-266. Springer.

Suttner, C. and Schumann, J. (1993). Parallel Automated Theorem Proving. in Kanal, L., Kumar, V., Kitano,

H., and Suttner, C., editors, Parallel Processing for Artificial Intelligence 1, pages 209-257. Elsevier.

Suttner, C. B. (1995). Static Partitioning with Slackness. DISKI. infix-Veriag.

Syverson, P. F. and van Oorschot, P. (1994). On Unifying Some Cryptographic Protocol Logics. In Proc. of

the IEEE Comp. Soc. Sympos. on Research in Security and Privacy, pages 14-28.

Tammet, T. (1997). GandMf. Journal of Automa ted Reasoning, I8(2): [99-204.

Weber-Wulff, D. (1993). Selling formal methods to industry. In FACE '93: Industrial-Strength Formal

Methods, volume 670 of LNAI, pages 671-.678. Springer.

Weidenbach, C., Gaede, B., and Rock. G. (1996). Spass and Hotter version 0.42. In McRobbie, M. A.

and Slaney, J. K., editors, Proc. 13th International Conference Automated Deduction, volume 1104 of

Lecture Notes m Artifical Intelligence, pages 141-145. Springer.

Wolf, A. (I 998). p-SETHEO'. Strategy Parallelism in Automated Theorem Proving. In Proceedings of 7th

International Conference on Analytic Tableaux and Related Methods. LNAI. Springer.

Wolf, A. and Kmoch, A. (1997). Einsatz eines automatischen Theorembeweisers in einer taktikgesteuerten

Bcweisumgcbcng aa ¢inem Bcispi¢l aus der Harwam-Verifikation. SFB Berichf SFB342/'20/97A, Tech-

nische Uaiversit/it Mfiachen.

Wolfram, S. (1991). Mathematica-A System for Doing Mathematics by Computer. Addison-Wesley, Read-

ing, MA, USA. second edition.

